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When placed in suspension red blood cells adhere face-to-face and form long, 
cylindrical, and sometimes branched structures called rouleaux. We use methods 
developed in statistical mechanics to compute various statistical properties 
describing the size and shape of rouleaux in thermodynamic equilibrium. This 
leads to analytical expressions for (1) the average number of rouleaux consisting 
of n cells and having m branch points; (2) the average number of cells per 
rouleau; (3) the average number of branch points per rouleau; and (4) the 
number of rouleaux with n ceils in a system containing a total of N cells. We 
also derive asymptotic formulas that simplify these analytic expressions, and 
present numerical comparisons of the exact and asymptotic results. 

KEY WORDS: Aggregation; red blood cells; rouleaux; statistical mechan- 
ics; rooted trees. 

1. INTRODUCTION 

When blood flow is stopped or substantially slowed the red blood cells, 
which had formed a monodisperse suspension, tend to aggregate into long, 
cylindrical, and sometimes branched objects called rouleaux. The cells 
within a rouleau generally adhere face-to-face and the rouleau resembles 
stacks of coins joined together into a treelike structure. Figure 1 illustrates 
the geometrical form of some typical rouleaux. 
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Fig. 1. Rouleaux that formed spontaneously from normal human blood. (a) Typical small 
rouleaux. (b) A larger rouleau. 
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Rouleau formation should be of general interest to both experimen- 
talists and theorists as a model system for the study of cellular adhesion 
and aggregation under physiological conditions. Erythrocyte aggregation is 
also of clinical interest since the appearance of large rouleaux increases the 
viscosity and the sedimentation rate of blood. The erythrocyte sedimenta- 
tion rate is measured diagnostically and indicates the presence of elevated 
blood plasma concentrations of certain macromolecules, such as immuno- 
globulin and fibrinogen, characteristic of various disease states. (1'2~ The 
increase in viscosity accompanying rouleau formation affects the hemo- 
dynamics of the microcirculation and has been implicated as the cause of 
complications seen in a number of diseases. (3~ 

The size and shape of rouleaux are important in determining their 
physiological effects. In thermal equilibrium the size distribution of rou- 
leaux and certain statistical properties characteristic of rouleau shape can 
be calculated using the techniques of statistical mechanics. Demonstrating 
how such calculations can be done forms the subject of this paper (bio- 
physical applications have been published elsewhere (4)). 

Under physiological conditions rouleau formation is a time-dependent 
phenomenon. The process of rouleau formation has recently been modeled 
by Samsel and Perelson (5'6) using sets of coupled kinetic equations. The 
equilibrium distribution to be derived in this paper should correspond to 
the infinite time limit of the theory of Samsel and Perelson. (6~ 

In the analysis presented here we only consider red cell aggregation in 
the absence of fluid flow. Hydrodynamic aspects of rouleau formation as 
studied, for example, by Goldsmith and Mason (7'1~ or Adler (ll) will not be 
dealt with. One of the main motivations for our work is that the influence 
of hydrodynamic effects on the rouleau size distribution can most easily be 
ascertained by neglecting these effects altogether and comparing the pre- 
dicted size distribution with the observed one. The problem of calculating 
the rouleau size distribution in a shear flow, which when large rouleau form 
requires a combination of the mechanics of fluids in porous media (121 and 
statistical considerations, will be left aside for the time being. 

In this paper we shall consider the following problem. A large number 
of red blood cells, N, are placed in a fluid at rest in a volume V, at an 
absolute temperature T and form rouleaux. We assume that two energeti- 
cally distinct adhesion processes occur as shown in Fig. 2: (a) two cells 
adhere face-to-face with a binding energy - E A < 0; (b) three cells adhere 
forming a branch point, with binding energy - E B < 0. As a result of these 
adhesion processes, the red cells form treelike structures. The process of 
tree formation is counteracted by random thermal motion (Brownian 
movement) which tends to break up rouleaux, especially large ones which 
can disintegrate in many different ways. Our goal is to calculate the 
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Fig. 2. 

(a) (b) 

) 

(c) 

(a) Two cells adhere with energy - E A < 0. (b) Three cells adhere forming a branch 
point with energy - E B < 0. (c) A branch point formed by n cells. 

resulting equilibrium distribution of rouleaux, i.e., the number of rouleaux 
of a given size after an infinitely long time. We shall also calculate the 
equilibrium distribution of the number of branch points in rouleaux of a 
given size. Before proceeding with the theory some comments are appropri- 
ate. 

Our model involves two basic energetic processes, chain elongation 
and chain branching. In our statistical mechanical calculations we shall 
generally not use the energies E A and E~ themselves, but rather the 
"Boltzmann factors" 

a ' =  exp (EA/kBT  ) and f l ' =  exp(EB/kBT  ) (1.1) 

where k B is Boltzmann's constant. Each red cell has two faces. Thus when a 
cell joins to an existing chain and elongates it, the adhesion can be to either 
of two faces. The variable 

a = 2a '  (1.2) 

will be used to denote the Boltzmann factor for elongation multiplied by 
the number of ways the interaction can occur. Similarly, when two cells 
adhere to a cell at the end of a chain to form a branch point, each cell can 
adhere with either of two faces. The variable 

= 4/3' (1.3) 

will be used to denote the Boltzmann factor for branching multiplied by the 
number of ways the interaction can occur. 

The values of E A and E~ depend on the type and concentration of the 
macromolecules that form the intercellular bridges mediating cellular adhe- 
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sion, the ionic composition of the medium, the surface charge on the 
erythrocytes, and the viscoelastic properties of the red cell membrane. We 
expect 

E A < E  B < 2 E  A (1.4) 

If E a were greater than E 8 then almost no branching would be present at 
equilibrium, contrary to observation. The three cells forming a branch 
point can at best adhere over an area twice that of two cells (see Fig. 2) and 
consequently we expect E~ < 2 E  A . For stable adhesion both E A and EB 
will be large compared to the thermal energy k n T, and hence a '  and/3 '  will 
be large compared to unity. 

Although we assume that three cells form a branch point our methods 
can easily be generalized to include the case in which a larger number of 
cells are involved as illustrated in Fig. 2c. If a single cell adheres to n - 1 
other cells, creating a branch point involving n cells, then 

E,  = (n - 2)E A + E._ ,  (1.5) 
where E,_  1 is the energy characterizing the binding of one cell to the edges 
of n - 1 other cells. In a stack of n - 1 cells there are n - 2 interfaces, each 
contributing an energy E A . Furthermore, for such multicell branch points 

/3 = 2" - ' f l '  (1.6) 

The assumption that rouleaux are treelike structures plays a central 
role in our analysis. At very large rouleau sizes this assumption may break 
down as a result of the formation of cycles in which a branch of a tree will 
attach itself to some other branch of the same tree. The phenomenon of 
cycle formation leads to tremendous mathematical complications which 
have not yet been resolved. There is some hope, however, that the method 
of the renormalization group can be used to gain insight into some of these 
problems.(13-15~ 

In order to characterize the rouleaux distribution at equilibrium we 
introduce the following quantities: (a) The average number of rouleaux that 
consist of n cells and have m branch points, R *  m .  This quantity leads, 
among others, to the degree of branching of the "average" rouleau and 
should, therefore, play a role in determining the sedimentation rate of a 
rouleau. (b) The average number of rouleaux consisting of n cells, R*. (c) 
The average number of cells per rouleau, (n) .  (d) The average number of 
branch points per rouleau, (m) .  

2. GENERAL CONSIDERATIONS 

We apply the general scheme of equilibrium statistical mechanics to 
the computation of the rouleau distribution. Although the methods we 
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employ are discussed in many texts (cf. Refs. 16-18), we shall briefly 
explain and motivate the methods so as to make our treatment intelligible 
to a biophysical audience. We begin with a number of definitions. 

A macrostate of the system is a collection of numbers (R,)  ~ (RI ,R 2, 
R 3 . . . .  ), where R. denotes the number of rouleaux consisting of exactly n 
cells. The macrostate can be observed experimentally. A microstate of the 
system is a particular assignment of the N red blood cells to the various 
rouleaux, including their ordering within each rouleau, and an assignment 
of the positions of the various rouleaux within the volume V. Microstates 
are characteristic of the state of each individual red cell and generally are 
not observed experimentally. 

To utilize the methods of statistical mechanics we first calculate the 
configuration sum Q (R~), defined by 

Q {R, ) = • ' e x p [  - E ( C ) / k B T  ] (2.1) 
C 

where the prime indicates a summation over all those microstates that are 
compatible with the macrostate (Rn) and where E(C) denotes the energy 
of microstate C. If there is a single macrostate (R*) obtained from the 
ovexavhelming majority of all possible microstates, then that state is the one 
that would be observed. Thus the most probable distribution (/~*) would 
correspond to the equilibrium rouleau distribution. The most probable 
distribution can be calculated by the standard technique of maximizing 
Q (R,)  with respect to variations of the R, that are compatible with the 
constraint that the total number of cells is constant, i.e., 

oo 

n R  n = N ( 2 . 2 )  
n = l  

The assumption that the equilibrium distribution is the most probable 
distribution is only valid when the number of states is so large that 
fluctuations around the most probable distribution are neglible (cf. Ref. 
19). One can rigorously show that this is the case in the "thermodynamic 
limit," i.e., when N---> 0% V--> oo, but the cell density N / V  remains finite. 
Here we shall assume that this is true. Thus our method will only be valid 
for studies employing a large volume of blood containing a large number of 
erythrocytes, as is usually the case. Donoghue and Gibbs (2~ and 
Donoghue (20 have recently developed methods which can be used to 
rigorously calculate the mean rouleau distribution in a system with a finite 
number of red cells. 

The calculation of Q (R,)  proceeds in several steps. First we count the 
number of microstates consistent with a given macrostate. To do this we 
note that there are many ways to divide N red blood cells into groups, each 
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of which corresponds to one rouleau, such that there are exactly R~ groups 
of n cells each, n = 1, 2 . . . . .  Call the number of ways this division can be 
made ~2(R,); it can be calculated as follows. Consider one particular 
partition of the N cells into R, groups of n cells each. Put the N cells in a 
linear sequence, beginning with the cells in the R1 rouleaux of 1 cell, 
followed by the cells in the R 2 rouleaux of 2 cells, etc. This gives a 
permutation of the N cells. There are N!  permutations of N cells. However, 
all permutations do not lead to distinct microstates. This is the case 
because, first, the n cells in each group of n can be incorporated in the 
linear sequence in n! different ways and, second, the R n groups of n cells 
each can be put down in the sequence in R,! ways. Hence one has 

~( Rn } = N! (2.3) 
1-ln o,(R~ n! "o ) 

In the second step in the calculation of Q (R,} we consider one of 
these ~2 different partitions. Take one of its rouleaux; this rouleau can be 
moved around through the volume V. This leads roughly to 

N O ~ V / v  (2.4) 

different microstates per rouleau. Here v is some elementary volume of the 
order of the volume of a red blood cell. Thus we are taking the view that we 
can specify the location of a rouleau by specifying the position of a single 
cell within the rouleau. In Section 3 we will consider the additional 
microstates that occur if rotations about the center of mass of the rouleau 
are also counted. 

Having now fixed this specific rouleau in some position in space, its 
microstates can be arranged in groups of n! states which arise out of each 
other by permuting the n cells in the rouleau among each other. Hence the 
sum of the Boltzmann factors over all the microstates of this particular 
rouleau can be written in the form Non!Q,, where Q, denotes the sum of 
the Boltzmann factors of all those microstates in which the rouleaux (a) 
consists of n cells which are indistinguishable, and (b) occupies a fixed 
position in space. As there is one factor Non!Q, , for each rouleau of n cells, 
one finds for the configuration sum 

Q (R,,) = ~(R,, ) I-[ (Non!Q,) R" (2.5) 
n = l  

which in combination with (2.3) gives the expression 

Q { R , }  = N !  f i  (2.6) 
n= 1 Rn! 
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The equilibrium distribution (R* } is found by determining the maxi- 
mum of Q {R,} subject to the constraint (2.2). As the logarithm is a 
monotonically increasing function one can as well maximize In Q (R,}. 
Using the method of Lagrange multipliers and Stifling's asymptotic for- 
mula (cf. Ref. 17) reduces the problem to finding the unconstrained 
maximum of 

L --~ ~ ( R, ln(N 0 0n ) - Rnln R~ + R,, - 3~nR~ } (2.7) 
n = l  

where ~, the Lagrange multiplier, is a parameter to be determined later. 
Taking the derivative of L with respect to R, and setting it equal to zero 
immediately leads to the equilibrium distribution of rouleaux 

gn* 
No - Q, exp(-~n)  (2.8) 

The value of the Lagrange multiplier ~ is determined by substituting 
the last equation into the constraint equation (2.2), yielding the implicit 
formula 

O9 

U _ ~ nQ, exp(-hn)  (2.9) 
NO n = l  

Note that N o is proportional to the volume 1I. Hence R*/No,  as well 
as ~, does not depend on N and V separately, but only on the cell density 
N~ V. Finally, one should note that the average number R* m of rouleaux 
with n cells and m branch points follows from (2.8) 

Rn* m 
No - Q,,mexp( - An) (2.10) 

This is the case because R*m/R* should equal Qn,,,,/Q,, where Qn,m equals 
the sum of the Boltzmann factors over all those microstates of a single 
rouleau in which the rouleau (a) consists of n indistinguishable cells, (b) 
occupies a fixed position in space, and (c) has m branch points. 

3. CALCULATION OF THE CONFIGURATION SUM Qn,m 
The considerations in the preceding section led to the formal expres- 

sions (2.8)-(2.10) which we shall now make explicit by calculating the 
configuration sums Qn and Q,,,,,. The basic quantity Q~,m can be calculated 
in many ways. Here we proceed by making use of the generating function 

Q(z,~) ~, Qn,m2n~ rn (3.1) 
n = l  m = 0  
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where z and ~ are dummy complex variables chosen with [z[ and [~1 small 
enough so that the sum converges. To determine this generating function 
we shall follow the method of G~ (22~ , which has also been used recently by 
Wiegel (23~. This method is much simpler than the competing methods of 
Hijmans (24) and de Gennes (25). 

In order to count rouleaux which are fixed in space, we shall start the 
enumeration with one specific cell, fixed in space. The free face of this 
specifically chosen cell shall be called the root of the rouleau. The rouleau 
can then be thought of as growing by a cell attaching to the face opposite 
the root. This choice of notation is motivated by that of graph theory. To 
represent a rouleau as a graph, each cell is drawn as a branch or edge of the 
graph. The two nodes which terminate each branch can be thought of as 
the faces of the cell. Since we only consider rouleaux without loops, the 
graph will be a tree. A rooted tree has one node, its root, distinguished from 
the others (26~ . In our considerations the root will always be an end point of 
the graph. We thus are dealing with a subclass of rooted trees called 
planted trees. (A planted tree is a tree rooted at an end point (26~.) The 
relationship between the number of "rooted rouleaux" and the number of 
rouleaux without a root shall be discussed later in this section. In what 
follows we shall begin our counting with a single cell and not specify which 
face is chosen as the root. Since there are two choices we shall count only 
one half the number of rooted rouleaux and then correct for this at the end 
of the calculation. Once a root is chosen the use of the Boltzmann factors a 
and fl rather than a '  and fl '  will automatically take care of the other 
degeneracies caused by cells having two faces. 

The basic observation which we use to count rooted rouleaux is that 
every rouleau either contains no branch points at all, or it consists of a 
straight segment (a cylindrical stack of red cells) followed by a branch 
point to which are attached two rouleaux wi th  or without branch points. 
We shall call a rouleau without any branch points a rouleau of order 0. Let 
Qo(z) denote the generating function for rouleaux of order 0, i.e., 

Qo(z)--- ~ Q,,,o z" (3.2) 
n = l  

Since a stack of n cells has n - 1 adhesive interfaces each with energy EA, 
and each cell can adhere to the next with either of two faces 

Qn,o = a n- l (3.3) 

where a is the weighted Boltzmann factor defined in (1.2). Therefore 

ao(z) = ~ an-lz ~= z(1 - az) -~ (3.4) 
n ~ l  
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Next we consider a larger class of rouleaux, those of order 1. A 
rouleaux of order 1 starts with a straight segment, which may, but need not, 
be followed by a branch point, with weighted Boltzmann factor t3, to which 
are attached two rouleaux of order 0. Denoting by Ql(z, ~) the generating 
function for rouleaux of order 1, one finds 

2 ) Ql(Z,~) = Q0(z){1 + fl~Qo(z)) (3.5) 

The term 1 between the brackets in this equation reflects the fact that 
rouleaux of order 0 are included in the class of rouleaux of order 1. The 
second term within the brackets is contributed by those rouleaux with a 
single branch point having weighted Boltzmann factor 13. The variable 
counts branch points and the factor Q2(z) arises from the fact that two 
rouleaux of order zero emanate from the branch point (see Fig. 3). 

Generally, a rouleau of order k starts with a straight segment which 
can bifurcate into two rouleaux of orders at most equal to k -  1. The 
generating function Qk(z, ~) for rouleaux of order k is therefore given by 

ak(z,~) = Q0(z){ 1 + 13~Q2_~(z,~)} (3.6) 

To see that this formula is correct, note from Fig. 3c that there are five 
possible structures for a rouleau of order 2. Thus the generating function 
for rouleaux of order 2 derived either from the figure or from (3.6) is 

O2(z,~) - Qo(z) + 13~Q3(z) + 2132~2Q~(z) + 133~3Qg(z.)  

where in each term, representing a possible structure, there is one factor 13~ 
for each branch point and a factor Qo(z) for each straight segment (branch) 
in the treelike diagrams representing the rouleaux of order 2. 

Co) 

Y 
(b) 

t v , t  
(c) 

Fig. 3. Graphical  representation of rouleaux of different order. (a) Rouleau of order 0. 
(b) Rouleaux of order 1. (c) Rouleaux of order 2. 
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In the limit k ~  m all rouleaux are included automatically in this 
enumeration process, i.e., 

lim Qk(z,O = O(z,~) (3.7) 
k---~ ~ 

Taking this limit (3.6) becomes 

O(z,~) = O0(z){ 1 +/3~OZ(z,~)} (3.8) 

As this is a quadratic equation for the unknown function Q an explicit 
solution is possible and leads to 

Q(z,~) = (2/3~Q0)-'[ 1 - (1 - 4fl~Qg)'/2] (3.9) 

Note that the second solution of (3.8), which would have the form of (3.9) 
but with a + sign in front of the square root, can be disregarded because 
this solution does not have the property limz_~0Q(z,~ ) = 0, which follows 
from the definition (3.1) of Q(z, ~) as a power series. 

The transformation (3.1) which.maps the real numbers Q,,m into the 
function Q(z, ~) can be inverted by performing a contour integral around 
the origin of the complex ~ plane, followed by a contour integral around the 
origin of the complex z plane. (27) In both cases the contours must have 
radii small enough so that the sum in (3.1) converges. With this restriction 

Qn,., = (2~ri)-2~ dz 

The ~ integral can be performed by noting that the quantity 

(2~ri)- '~  O(z,~)~-m-~ d~ 

equals the coefficient of ~m in Q(z,~). Using (3.9) and the binomial 
expansion 

1 (4f l~Q2)_  1. I (1 - 4fl~Qg) '/e= 1 - ~ ~ (4/3~Q2) z 

1 . 1 . 3  ~ o)ea/3~O 2~3 (3.11) 
2 4 6  

one finds 

(2~ri)-1~ Q(z, ~)~ 
1 - 1 " 3 - 5  . . . .  ( 2 m -  1) 2 '~ 

-m-ld~=2O~ 4 - 6 - 8  . . . .  ( 2 m ~ 2 )  (4/30~ 

(3.12) 
Substituting this into (3.10) yields 

1" 1" 3" 5 . . . .  ( 2 m -  I)(,)~~ z O,,m = 2(4/3) m ~ -4 6 8 . . . .  (2m +-2) 
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In the same way, the z integral can be calculated using (3.4) and the 
binomial expansion for (1 - e~z) -2m- 1. This gives the final result 

Qn,m = 2(4~) m~ 1- 1 . 3 . 5  . . . .  (2m - 1) 
2 . 4 . 6 . 8  . . . .  (2m + 2) 

(2m + 1)(2m + 2 ) . . .  (n - 1) 
• (n - 2m - 1)! (3.13) 

which can also be written as 

Q,,m = m + 1 (3.14) 

We end this section with three comments.  First, we verify that (3.14) 
has the right qualitative properties. Because there are m branch points in all 
the rouleaux which are included in Q~,m there should be a Boltzmann factor 
Bm. This is in agreement with (3.14). Next  note that n cells have 2n cell 
"faces," of which 3m are involved in forming the m branch points and 
m + 2 form free ends. Hence 2n - 3m - m - 2 = 2n - 4m - 2 cell "faces" 
form n -  2 m -  1 cell-cell contacts, which should lead to a Boltzmann 
factor ~ , - 2 m - l ,  also in agreement with (3.14). Lastly, note that when m = 0 
(3.14) reduces to (3.3). 

Second, recall that the configuration sum (3.14) must be multiplied by 
a factor of 2 which counts the number  of ways the first red blood cell can 
be oriented, i.e., the root can be chosen in two ways. Thus the configuration 
sum of the rooted rouleaux, Q,~,m, is given by 

Q;,,, =2Q,,,, (3.15) 

Third, observe that when one counts rooted rouleaux one overcounts 
the number  of distinct structures that would be generated by red cell 
aggregation since each choice of a root gives rise to a different rooted 
rouleau. For  example, if one examines the rouleau represented as a tree in 
Fig. 4, in which the root is fixed in the location labeled with an A, notice 
that choosing B, C, or D as the root gives rise to the same tree, only 
rotated. Since we "grow" the tree from the root, only ends can be chosen as 
roots. A tree with m branch points has m + 2 ends; thus we should divide 
Qrm by m + 2. To correctly account for rigid rotations of the rouleau about  
its center of mass we need to introduce a factor of 4~r. Hence it is more 
accurate to replace (3.15) by 

On,m = 4~r(m + 2)-'Qnrm (3.16) 

In this approximation we still have neglected kinetic degrees of freedom of 



Equilibrium Rouleau Distribution 825 

D 
D C B ~  c 

Fig. 4. 

B A B 

A graphical representation of rooted rouleaux. Choosing the root as any of the 
four end points gives rise to the same rouleau only rotated. 

the rouleau, for example, elastic vibrations of the rouleau structure. In the 
rest of this paper we shall continue to use expression (3.14) but occasionally 
also refer to the consequences of using (3.16). 

~Fourth, (3.15) and (3.16) together with (2.9) and (2.10) leads to explicit 
results for R~m and Rn, m the number of rooted and unrooted rouleaux with 
n cells and m branch points, respectively. As this is the most "fine grained" 
type of information about the distribution, all the other quantities of 
interest, which were enumerated at the end of Section 1, can be derived 
from it in a fairly straightforward way. 

4. THE DISTRIBUTION OF ROOTED ROULEAUX 

The configuration sum Q,, determines through (2.8), (2.9), R*, the 
distribution of rouleaux with n cells. In principle, Qn can be found from the 
result of the last section by summation 

oo 
O r =  ~ Orm (4,1) 

m=0 

where we have included the superscript r to denote we have restricted our 
attention to rooted rouleaux. Similarly, Qr(z, ~) will denote the generating 
function with coefficients Q~,m. In Section 6 we numerically calculate Q,~ in 
this way for some specific values of the parameters n, a, and ft. However, 
we have been unable to perform the summation analytically and have 
therefore turned to alternative methods of determining Q~. 

The generating function for Q~, 

qr(z) =-- ~ O~z" (4.2) 
n=l 
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for rooted rouleaux can be found by substi tuting ~ = 1 into (3.9) and  
mult iplying by  two to conver t  Q,,,m to Q~,,m. This leads to 

qr (Z) = (/3Qo ) -  111 - (1 - 4/3Q 2) 1/2] (4.3) 

which with the substi tution of (3.4) for Qo(z) becomes  the explicit funct ion 
of z 

qr(z)  = ( f lZ ) - l (1  -- C~Z) 1 -- 1 _---~)2 

The  coefficients Q2 in (4.2) can be de termined by  taking the Taylor  series 
expansion of q~(z) a round  z = 0. The  values of Qs found  in this way are 
listed in Table  I. For  large values of n this explicit app roach  becomes  
prohibit ively difficult and  the following approx imate  me thod  can  be used. 

As q is a power  series with positive coefficients it is a monotonica l ly  
increasing funct ion of z along the positive real z axis. In  the complex  z 
plane q(z) has  b ranch  points  at the solutions of the equat ion Q~(z) 
= (4/3)-1; these are 

z o = ( a  + 2~//3)- 1<< 1 (4.5) 

and  

z I = ( a  -- 21/fl) -1 (4.6) 

Both b ranch  points  are si tuated on the real z axis; z 0 is closer to the origin 
than  the pole oL -1 of Q0(z); z 1 is always far ther  f rom the origin than  z 0- 

In  order  to calculate Qn ~ one can  integrate qr ( z ) z -n -1  along a contour  
surrounding the origin in the complex  plane.  Using the saddle point  

Table I. The Boltzmann Weighted Configuration Sum of 
Rooted Trees, Q•, for Small Values of n 

n Q~/2 

1 1 

2 a 
3 OL2+fl 
4 a 3 + 3aft 
5 a 4 -I- 6a2/~ + 2/~ 2 
6 a 5 + 10a3fl + 10aft 2 
7 a 6 + 15aaB + 30a2B 2 + 5133 
8 ot 7 + 2laSt + 70a3/~ 2 + 35aft  3 
9 a 8 + 28a6/~ + 140a4/~ 2 + 140a2/~ 3 + 14fl 4 

10 a 9 + 36avB + 252asB 2 + 420a3~ 3 + 126aB 4 



Equilibrium Rouleau Distribution 827 

method (18'2s) to approximate this integral, one finds that for large n the 
major contribution to the integral occurs in the neighborhood of z 0, the 
singularity nearest the origin. Knowing this it suffices to expand the 
function under the square root in (4.3) in the vicinity of z 0 

1 - 4fiQ~(z) = a2(z0 - z) + O(z o - z) 2 (4.7) 

where 

a2=-8flQ~ Q~176 l + 2 ~  )2 (4.8) 

Close to z = z o one has, therefore, the power series expansion 

qr(z )~[  flQo(zo)]-lazl/2(l~ ( F o )  + ~_7~ ( z  o z  1 .1  z )2 

- -  + . . .  ( 4 . 9 )  
+ 2  4 6  z0 

The configuration sum Qr, which is given by the coefficient of z n in this 
power series, is now found to equal 

Q~2af i_~ /Zz~ /2_ ,~ l .1 .3 .5  . . . .  ( 2 n - 3 )  (n>>l)  (4.10) 
2 - 4 . 6 . 8  . . . .  2n 

where we have used the fact that Qo(zo)= (4fl) -1/2. The product on the 
right-hand side can be calculated with the formula of Wallis {cf. equation 
(6.1.49) of Ref. 29). In this way one finds 

Q,[ ~ cn -3/2zon (n >> 1) (4.11) 

where 

c=--a(~fl)-'/2z~/Z= (+)(1+ 2-~}J <<1 (4.12) 

The same result (4.10) can also be derived by evaluating a contour integral 
around the origin of the complex z plane with the saddlepoint method in 
the case n >> 1. 

The equilibrium distribution of the rouleaux now follows from (2.8), 
(2.9), and (4.11) by eliminating ff between 

R *  ~ cn-3/2~ n (4.13) 
No 

and 

N ~ 1/2ff~ (4.14) No c ~  n -  
n = l  
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where 

/~ =-- zo- 'exp(-)t)  -- (o~ + 2~-~)exp( -  )t) (4.15) 

Note that the two energies E A and E 8 only enter the distribution in the 
combination (4.12) which defines the constant c. Of special interest is the 
regime where N and N O are of the same order of magnitude, c << 1 and 
n >> 1. In this regime the value of/~ must be close to (but slightly smaller 
than) unity in order to give the series ~n--1 /2~"  the large value N / c N  o. 
When /~ -- 1 the series diverges, but it converges when /~ < 1. Hence the 
rouleau distribution can be approximated by 

R*n ~ -3 /z  (4.16) 
No cn 

This is the main result of the present theory. It is remarkably simple 
and subject to experimental verification. It shows that R* is always a 
decreasing function of n, which means that a larger rouleau is always less 
probable than a smaller one. The distribution nevertheless has a very long 
"tail" due to the slow decay of the factor n -3/2. 

A more precise estimate of the rouleau distribution can be obtained by 
solving (4.14) for t~. This equation involves a summation of the form 

~(/~,s) = ~ n-S/~ n (4.17) 
n = l  

studied by Truesdell (3~ for s = 1/2, 3/2, and - 1 / 2 .  For /~ near, but 
smaller than one, the asymptotic formula (3~ 

~(/~,s) = F(1 - s ) ( - l n / ~ ) s - , +  ~ f (s  - n) (In/x)" (4.18) 
n=0 n[ 

can be used. Here F(-) denotes the gamma function and f ( . )  is Riemann's 
zeta function. The values of both functions are tabulated in Dwight. (31) 
With s = 1/2, (4.18) becomes 

q~(/x,�89 ~4~- ( - ln /~ ) -1 /2+  ~(�89 + ~ (_  �89 (4.19) 

where we have omitted terms of order (ln/~)2 and higher; f (1 /2)  ~ - 1.46 
compared to which the omitted terms are negligible when/~ is near 1. 

The substitution of (4.19) into (4.14) yields an equation, which when 
squared and terms of order (ln/~)2 neglected can be solved to yield 

- ~r 1 (4.20a) /~ = exp - ~  b3 
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where 

cN o 

If N / c N  o >> 1, then the simple expression 

._- oxp[_o( ) l (4. 0b) 
suffices. 

The Lagrange multiplier 2t now follows directly from (4.15) and (4.20), 

~r [ 2 ~ r ~ ( - 1 / 2 ) ]  
~ = l n ( a + 2 7 r f l ) + ~ 5  1 63 (4.21a) 

which in the case N / C N  o >> 1 simplifies to 

[ ~cN ~ )2 
= ln(a + 2/'f-B] + ~r~ (4.218) 

Equations (4.20) and (4.21) are only approximate because they depend 
upon the asymptotic result (4.11) and the asymptotic formula (4.19)." The 
Lagrange multiplier X may be determined exactly using the generating 
function qr(z). From the definition of qr(z) as a power series, (4.2), one 
sees that (2.9), which determines ~, is equivalent to the following equation: 

N _ {z 8q~ ] (4.22) 
N O ~ ~z ]z=exp(_X) 

where the expression on the right is evaluated at z = exp ( -~ )  after the 
differentiation is performed. Evaluating the derivative in (4.22) through the 
use of (4.4), results in the following implicit equation for A: 

N 1 -  a z - [ ( 1 -  az)2-4flz2] 1/2 
(4.23) 

No flz I (1 - az) 2 - 4fiz2] 1/2 

where z = exp(-~) .  As we show in Section 6, this equation can easily be 
solved by numerical methods. Because N / N  o is real, (1 - az) 2 > 4flz 2 or 
z < z 0 = ( a  + 2~/-fl) - l .  Therefore ~ < - l n z  0. Given a value of ~ that 
solves (4.23),/~ can be determined exactly from (4.15). 

It is easy to calculate other quantities of interest. For example, using 
(2.13) and (3.1) the average number of cells per rouleau can be expressed in 
terms of the generating function Q(z, ~) 

(n )  :-  ~ - (4.24) 
E n,m Rn,m "~z z = e x p (  - -  3 0 ,  ~: = 1 
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Since we are not differentiating with respect to (, we can set ~ = 1 before 
differentiating and hence replace Q(z, 1) by qr(z). If we now substitute 
(4.22) into (4.24) we obtain (n>r, the average number of cells per rooted 
rouleau: 

N (4.25) 
(n>~ = N0q~[exp(_X) ] 

which shows that the average number of cells per rouleau grows in 
proportion to the total number of cells, N. Alternatively, the substitution of 
(4.4), (1.1)-(1.3), and (4.23) into (4.25) yields a form which illustrates the 
dependence of (n>r on the energies E A and EB: 

(n)r  = {[1 -- 2exp(EA/kBT - h)] 2 - 16exp (EB/kBT-  2X)}-1/2 (4.26) 

For the calculation of other statistical properties of rouleaux one can 
make use of the following relations which, for any rouleau, connect the 
number (S) of straight segments, the number (I)  of internal straight 
segments, and the number (E) of external straight segments with the 
number (m) of branch points 

S = 2m + 1 (4.27a) 

I = m - 1 (4.27b) 

E = m + 2 (4.27c) 

where m = 0, 1 , 2 , 3 , . . . .  It is, therefore, only necessary to calculate the 
average number (m)  of branch points per rouleau. Rather than giving full 
details we sketch the outline of the calculation of this average. Using (2.10) 
and (3.1) one finds 

.... mRn*m [ ~ ~Q 
(m> -: E,,mR,*m - ~ --O "~- ]z=exp(-)t),.~=l 

(4.28) 

5. THE DISTRIBUTION OF UNROOTED ROULEAUX 

It was already noticed at the end of Section 3 that Qr, m as given by 
(3.15) represents the configuration sum over all rooted rouleaux of n cells 
with m branch points. It is probably somewhat more realistic to represent 
rouleaux by unrooted trees than by rooted trees. Rather than mimic the 
analysis in Section 4, we shall use a different method to find the asymptotic 
distribution of unrooted rouleaux when n >> 1. Let R~ and Rn* m be the 
numbers of unrooted rouleaux with n cells, and with n cells and m branch 
points, respectively, in a state of thermal equilibrium. Using (2.10) and 
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(3.16) one finds 

where 

R) = Z ~*Rn, m ---- dn ~, (m + 2) - 1Qn,mr ( 5 . 1 )  
rn m 

dn = 4qrNoexp( - An) (5.2) 

Having calculated in the last section the number of rooted rouleaux, R*, it 
is expedient to express R'n* in terms of R*. To do so we write (5.1) as 

R) = d.~m ((m)n + 2)-1 1 + ~ m - ) ~ - ~  Qnr, m (5.3) 

where ( m ) .  is the average number of branch points of all rooted rouleaux 
which consist of n cells. Equation (5.3) can be expressed in terms of the 
series 

Orrl(m m> t ] R ' * n = d ~ ( ( m ) ~ + m  2)- L +(  . . . .  

(5.4) 
(5.5) = S 0 - S 1 --[- S 2 . . . .  

where the sum 

S i = d.~((m).m -1- 2 )  Q.,m T~-~" ~ 

Observe S 1 = 0 since 

Also 

(5.6) 

$2 1 

( m ) . -  2mmR~*'m - 2mmQ"~'m (5.7) 
~ r 

2 m R n , m  ~ m a n , m  

So ( (m) ,  + 2) 2 

~,m(m -- (m)n)2O2,m = (m2) .  - ( m ) ]  

E,nQ.~,m ((m)n Jr 2 )  2 
(5.8) 

R) = 4~r(<m), + 2)-1R* (5.9) 

In order to find the distribution of unrooted rouleaux in terms of the 
distribution of rooted rouleaux it is now necessary to calculate the average 
number ( m ) ,  of branch points of all rooted rouleaux which consist of n 

w h e r e  (m2)n- ( m )  2 is the variance in the number of branch points of 
rooted routeaux with n cells. If this variance is small, or if (m)n is large as 
would be the case when n ,m >> 1, then $ 2 / S  o << 1 and 
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cells. This can most easily be done by noticing that for large rouleaux (m)n 
will be very close to that value of m for which Qnrm attains its maximum. At 
the maximum 

On,m 
On,m+~l -- I (5.10) 

Substituting (3.14) this condition becomes 

(n - 2m - 1)(n - 2m - 2) = /3  -lc~2(m + 2)(m + 1) (5.11) 

hence 

n (n,m >> 1) (5.12) (m~n 2 + (a/~//3) 

The distribution of unrooted rouleaux for n >> 1 is now found by 
substitution of the last equation into (5.9), noticing that (m},  >>2, and 
using (4.13). This procedure gives 

R~ 
==-- 4r + 1) (5.13) N---o -~)n-5/21xn ( n > >  

We close this section with some general comments on this remarkably 
simple result. First, it is seen from (5.12) that the average number of cells in 
a straight segment is given by 

n _ n -- 1+  a (n>>l)  (5.14) 
S 2(rn}, + 1 2~//3 

where (4.27a) was used. When rouleaux are broken up into straight seg- 
ments by hydrodynamic processes such as shearing, the individual seg- 
ments should on the average consist of 1 + (a/2~//3) cells. 

Second, it is seen that the distributions (4.16) and (5.13) of rooted and 
unrooted rouleaux differ in one important qualitative respect. The series 

Nu =-- 2 nR* ~ 4~rNoc 2 + 
n = l  = 

converges for all values of /~ ~< 1, but diverges for tt > I. Therefore, for 
unrooted rouleaux tt ~< 1. As /~ increases from zero, N u increases and 
obtains a maximum value when/~ = 1. Consequently, for some values of 
the parameters a and/3 only a finite fraction of the total number of red 
cells can be accommodated in unrooted rouleaux of finite size. This 
number N u . . . .  is given by the right-hand side of (5.15) with/~ = 1 and the 
sum replaced by its value, 0(1, 3/2) -~ 2.612, 

Nu . . . .  ~ 32-8N0c[2 + (a/~/f i)]  (5.16) 
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The remaining number of red cells, 

Nc~-N-N=,max 
will presumably condense into a single macroscopic clot which does not 
have a treelike structure and which might flocculate out of the solution. 
This situation, which is reminiscent of the phenomenon of Bose condensa- 
tion in an ideal gas of Bose particles, (17'18) and of the phenomenon of 
gelation in a system of self-aggregating multivalent particles (32) indicates 
the breakdown of our assumption that the rouleaux are treelike structures 
at large hematocrits, and deserves further research. 

When the system parameters lie outside the region that corresponds to 
condensation, ~t < 1. As in Section 4, one can estimate/~ using the Truesdell 
function (p(/~, 3/2),  or compute h and then/~ from the red cell conservation 
law which can be written as a modified form of (4.22), i.e., 

N __ (Z ~zU )z = exp(_h),,~= (5.17) No 1 

where the generating function 

QU(Z,~) ~- Z Z ~ " m Qn,m z ~ (5.18) 
n m 

Using (3.16), (4.1), and (4.2) it is easy to see that 

1 d[~2QU(2,~)] = Q'(z,~) (5.19) 
4rr~ d~ 

from which one can conclude 

eU(z,~) = 4r 2eo3(z ) ] -1(6f l~O2(z)  _ 1 + [1 - 4fl~Q~(z)]3/2) 

(5.20) 

Substituting this into (5.17) one finds the following implicit equation for 2~: 

NoN _ flzU(z)4rr (2 - U(z) - 2[ 1 . U(z) ]1/2} z=exp(-h) (5.21) 

where 

U(z) -- 4flQ~(z) (5.22) 

is evaluated at z = exp( -~) .  By solving (5.21) for ~ and substituting into 
(4.15) one obtains/~. From Q U(z, ~) one can obtain using (4.24) and (4.28) 
the average number of cells, (n)u,  and the average number of branch 
nnints. (m)u , per unrooted rouleaux. These procedures will be used in the 
numerical calculations discussed in Section 7. 



834 Wlegel and Perelson 

Equation (5.21) is a modified form of the red cell conservation law. 
When U(z) > 1 the right side becomes imaginary and no solution exists. 
Thus U(z)= 1 is the condition for condensation. Perelson and Goldstein 
(manuscript in preparation) show that for condensation polymerization 
reactions U(z) = 1 is equivalent to the classical criteria for gelation (cf. Ref. 
32). Further at U(z) = 1, (n2),  and higher moments all become infinite, as 
occurs in gelation. 

6. PARAMETER VALUES 

Our theory of equilibrium rouleau sizes depends upon six physically 
determined parameters: the total number of red cells in the system N, the 
system volume, V, the energies of adhesion in a straight segment, EA, and 
at a branch point, Es,  the absolute temperature T, and No, the number of 
different positions a rouleau can assume within the volume V. The temper- 
ature and volume will be assumed to be known. If v in (2.4) is chosen as the 
volume of a red cell then, as we discussed previously, (4) 

N / N  o = N v / V  (6.1) 

is the ratio of the volume occupied by red cells to the total system volume, 
a quantity of physiological significance called the hematocrit. (33) Normal 
human blood has a hematocrit of approximately 45% and rouleau experi- 
ments are done at this or lower hematocrits. A 1% hematocrit corresponds 
to 1.07 • 105 erythrocytes per mm 3 (33); thus at this hematocrit N~ V = 
0.01N0/V = 105 mm -3, or N o / V  ~-- 107 erythrocytes mm -3. If the hemato- 
crit is h, then N~ V = hNo/V is determined. In any experiment the hemato- 
crit is known. Consequently, the number of rouleaux at equilibrium, R* 
and Rn* m, if expressed per unit volume, will depend only upon E A and E B, 
the two basic parameters in our theory. 

There have been numerous theoretical and experimental investigations 
of the energetics of red cell adhesion. Erythrocytes have a negative surface 
charge. In rouleau formation the electrostatic repulsion between two cells is 
thought to be overcome by macromolecules which simultaneously adhere 
to the opposing faces of the adherent cells. (34'35) Thus as reviewed by 
Chien (34'35) the value of E A will depend upon the concentration of the 
bridging macromolecules, the number of bonds made with the cell surface 
per bridging molecule, the interaction energy per bond, the ionic strength of 
the solution, as well as factors intrinsic to the red cell, including its surface 
charge, and the elastic properties of the membrane. Consequently, the value 
of E A may be quite variable depending upon the experimental conditions. 
For aggregation due to Dextran 70, with average molecular weight 75,000 
daltons, the aggregation energy per unit area has been estimated to be of 
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order 10 -4 ergs/cm2. (34'35) Since the area of contact between two cells in a 
rouleau is of order 50/~m 2, at 37~ the net adhesion energy E A is of order 
103kBT. The Boltzmann factor a corresponding to this value of E A is of 
order 10434 and thus too large to easily be used in most modern computers. 
Consequently, in the next section when we numerically evaluate the formu- 
las in our theory we have chosen to use E A = 10kBT, a value significantly 
smaller than estimated by Chien, (34'35) but one that could be attained 
experimentally at sufficiently low concentrations of the bridging macro- 
molecule. We know of no experimental measurements of EB. However, as 
we argued in Section 1 for a 3-cell branch, E A < E B < 2 E  A . Thus we can 
estimate a range of E B values from E A . 

7. NUMERICAL RESULTS 

In order to gain insight into the predictions of our theory and to test 
the applicability of our asymptotic results we have numerically evaluated 
the formulas that determine the rouleau size distribution. We have previ- 
ously reported (n) some of our numerical results using Q,,,m as given by 
(3.14). Here we will rigorously extend these results to the cases of rooted 
and unrooted rouleaux. 

Our analyses in Sections 3-5 gave rise to explicit expressions for the 
configuration sums of rooted rouleaux 

m n - 2 m - I  n - 1  

o~r m = ( 7 . 1 a )  
m + l  

and unrooted rouleaux (including rigid rotations) 

On,m = 4~r(m + 2) -1 Qnrm (7.1b) 

~* the equilibrium number of These quantities determine R*,,m and R,,,,,,, 
rooted and unrooted rouleaux with n cells and m branch points, through 
the equations 

Rn*,m = N O Qnrmexp( - An) (7.2a) 

~* 4~rN0(m + 2)-'N O Q,~meXp(-An) Rn,m (7.2b) 

once the Lagrange multiplier A is found. Making use of the generating 
function Qr(z,  ~) we showed that for rooted rouleaux A obeys the equation 

N 1 - a e x p ( - A )  - { [ 1 - a exp(-?~)]2 - 4fl e x p ( -  2A)) 1/2 

No - f l e x p ( - A ) ( [ 1  - a e x p ( - A ) ] 2 -  4f lexp(-2A)} ~/2 (7.3) 
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The equilibrium number of rouleaux with n cells, R* or /~*, can be 
determined by summations of the form 

[(n- 1)/21 
R*n"~ E Rn*,m (7.4) 

m = 0  

where [(n - 1)/2] denotes the greatest integer contained in (n - 1)/2. The 
upper limit in this summation is determined by the fact that Q;,m = 0 when 
2m > n - 1. To perform the summation analytically one needs to explicitly 
sum Q,r m over m to obtain Q~. Being unable to perform this summation, we 
derived an asymptotic analytical formula for Qr, (4.11), which is valid for 
n >> 1. Using this approximate form for Q~ we then found 

R* ~ cNon-3/Z~n n >> 1 (7.5) 

where 

and 

1 '/2 
(7.6) 

/x = (a  + 2~f-fl)exp(-~) (7.7) 

Assuming the number of rooted rouleaux with n cells is given by (7.5), 
we then derived an asymptotic formula for the number of unrooted 
rouleaux with n cells, 

( a ) - 5 / 2 / , . ,  R~ ~- 4~rcN o 2 + --~ n n >> 1 (7.8) 

where/~ is still given by (7.7) but ~ is now determined by the solution to 

with 

N _ 4 7 r [ 2 -  U -  2 ( 1 -  U)  '/2] 

N o / 3Uexp( -~ )  

V = 4/3 exp( - 2~)[ 1 - a exp( - ) , )  ]2 

(7.9) 

(7.10) 

Equations (7.1)-(7.10), which form the basis of our model, were 
evaluated numerically. In Table II we list values of Q~,m computed using 
the recursion relation 

_ /3 ( n - 2 m + l ) ( n - 2 m )  
Qr'm a2 m ( m  + 1) Q,~,m-l, m = 1,2 . . . .  (7.11) 

derived from (7.1a). To start the recursion Q~,0 is evaluated using (3.3) and 
(3.15). For the computations shown in the table we chose E A = lOksT  and 
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E s = 12k B T, i.e., a = 4.4 • 104 and fl = 6.5 • 105. Even for these small 
values of E A and E B one sees that Q~,m grows very rapidly with n, as is to 
be expected because Q~,0 = 2 a " - I .  For all values of n shown, Q~,0 > Qr,1 
> Qn~,2 > �9 �9 �9 > Qnr, m since B / a  2 = 3.4 x 10 -4 is sufficiently small to coun- 
terbalance the increase in configurations that become available as m 
increases and the trees become more highly branched. However, as n gets 
large, the configurational term (n - 2m + 1)(n - 2 m ) / m ( m  + 1) will even- 
tually dominate the energetic factor f l / a  2 and the configuration sum for 
some branched trees will be greater than the configuration sum for un- 
branched structures. For example, when n ~- ( 2 a 2 /  f l )  1/2, Q~,l > Q,~,o. This 
occurs when n is of order 80 for the parameters used in computing Table II. 

Proceeding with the analysis of rooted rouleaux we solved (7.3) for 
using an algorithm developed by Dekker (36) to find the zero of a real 
valued function within a prescribed interval. With E A and E 8 as given 
above and the hematocrit N / N  o = 0.01, 7~ = 10.7673. When the hematocrit 
N / N  o = 0.05, ~ = 10.7374 and when N / N  o = 0.45, ~ =  10.72945. Thus 
there is extremely little variation in the value of X over the hematocrits of 
experimental interest. This is not surprising for as we argued in Section 4, 

- - -Zo%Xp(-~ ) must be close to, but slightly less than unity. Therefore 

= - I n  p.z 0 must be slightly larger than - l n z  0 = ln(a + 2 ~ ) =  10.7291. 
For the three values of hematocrit discussed above, 1%, 5%, and 45%, our 
calculations using (4.23) and (4.15) show/~ = 0.9626, 0.9918, and 0.9997, 
respectively. Thus the values of Ix are close to, but less than unity, as 
predicted. Evaluating (4.21a), the approximate formula for ~, we find 

= 11.0167, 10.7553, and 10.72954, for the 1%, 5%, and 45% hematocrits. 
Thus this analytic expression yields results accurate to 0.001% at 45% 
hematocrit, but only 2% accurate at an hematocrit of 1%. 

Using a 5% hematocrit for illustrative purposes, we list in Table III the 
values of R~m for various values of n and m, computed using a recursion 
scheme based upon (7.2) and (7.10) assuming E A = I O k B T  and E~ 
= 12kBT.  For these values of E A and Es the rouleaux tend not to be highly 
branched. The average number of branch points, ( m ) r  , computed over the 
whole population of rouleaux via (4.28), shows (m) r  is very small ((m)r 
= 0.35). However, as E s becomes larger, branching becomes more proba- 
ble and ( m ) r  increases. In Fig. 5 we show the effect of increasing EB, with 
E A held fixed at lOk s T, over the range specified by (1.4) with the hemato- 
crit fixed at 5%. 

Computing (n ) r  with (4.26) shows that at 5% hematocrit with E A 

= I O k B T  and E s = 1 2 k ~ T  the average rouleau size is 39.5. At 1% and 45% 
hematocrits, the corresponding values are (n)~ = 15.9 and 207.9, respec- 
tively. Thus the higher the hematocrit the larger the rouleaux. This can be 
seen more dramatically in Fig. 6, where we plot the concentration of rooted 
rouleaux of size n, R*, versus n for various hematocrits. 
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The average rouleau size also increases if either the adhesion energy E A 
or the branching energy E B increases. In Fig. 7 we show the effect on (n)r  
of increasing E B over the range E s < E A < 2E~, with E A held fixed at 
10ks T. Thus as E B increases, not only are the rouleaux more branched but 
they are also larger, since each time a branch forms two more cells are 
added to the rouleau. This qualitative behavior cannot easily be predicted 
from (4.26) because 7t changes if E B is changed. However, using the 
asymptotic results, (4.13) and (4.14), one finds 

~n~=l nR* ~ ~ = l n - 1 / 2 b  tn N (7.12) 
( n ) r -  Xn~__lR,n X~=ln-3/2[s n ~ cNoeP(l~,3/2 ) 

Since/~ - 1 and ~(1, 3/2)  ~ 2.6, 

N (7.13) 
(n)r  2.6cN0 

Thus the dependence of (n)r  on E A and E B is through c. Combining (7.13) 
and (4.12) results in 

~ N ( 4~fi3/2 ) 1/2 
( n ) r -  2.6N 0 a+~]--~/3 (7.14) 

Thus we see (n)r  increases with /3. If we hold a fixed, then (n)~ is 
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Table IV. Values of Q.~ Obtained by Summing 
Q,~,m over m and the Approximate Value Q~ 

Obtained from (4.11) for E~ = lOksT 
and En = 12k~T 

n (Qn) exact (Qn) approximate 

1 2. 2 .4  • 102 
2 8.8 x 104 3.9 • 106 
3 3.9 • 109 9.6 • 101~ 
4 1.7 • 1014 2.9 • 1015 
5 7.5 x 1018 9.3 • 1019 

10 1.3 • 1042 6.6 x 1042 
20 3.6 • 1088 9.2 • 1088 
40 3.3 • 10 TM 5.0 x 10 TM 

50 1.0 • 10228 1.4 x 10228 

proportional to fl 1/2 for 2 f f l  >> a and a semilogarithmic plot of ln (n) r  

versus E B should be linear with slope 1/2. This linear dependence is exactly 
what is seen in Fig. 7 as E 8 becomes large. 

To test our asymptotic results more carefully we compare in Table IV 
the values of Q~ obtained by summing Qf,.m over m with the approximate 
values of Q~ computed from (4.11). As expected the approximate results are 
very poor for small n, but become increasingly accurate as n increases. 
Thus for large n we expect the approximate formula (7.5) for the equilib- 
rium rouleau distribution to be accurate. That  this is indeed the case is 
shown in Fig. 8, where we plot for a 5% hematocrit  the exact and 
asymptotic rouleau distributions. Here we see excellent agreement for 
n/> 200. Because the error in the asymptotic formula for R* is due only to 
the error in the asymptotic formula for Q,~,m, a quantity whose value is 
independent of the hematocrit, we obtain precisely the same relative error 
in the asymptotic formula for R* at other hematocrits as was obtained in 
Fig. 8 for 5% hematocrit. 

Our numerical studies of unrooted rouleaux show that our asymptotic 
formula for R,'*, (7.8), with its n-5/2 dependence, is accurate for large n. In 
Fig. 9 we plot for a 5% hematoerit  the values of /~* computed exactly by 
summing Rn, m as given by (7.2b). Besides the excellent agreement between 
the exact and asymptotic curves for large values of n, one should note that 
with our standard parameter  values of E A = lOk~T and E B = 12ksT large 
unrooted rouleaux occur with very low frequency. In Figs. 10a and 10b, we 
show the mean size of, and the mean number  of branch points in, an 
unrooted rouleau computed from (4.24) and (4.28) for different values of 
the branching energy, EB, with E~ = lOk~T. As E~ increases rouleaux 
become more branched and the possibility of an infinite-sized aggregate 
becomes more pronounced. At a critical value of E B , which we denote E~, 
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the condensation condition U = 1 is met and ~ can no longer be computed 
from (7.9). An analytic formula for the critical branching energy E~ can be 
obtained by setting U = 1 in (7.9), resulting in 

4~rN~ (7.15) 
f l C = N z  

where tic denotes the value of fl at U = 1 and z -- exp(-~).  Substituting 
this value of fl into (7.10) with U = 1 gives a quadratic equation in z with 
roots 

z = - + ~ a  aZN 1+ l + 4 ~ r N 0 ]  j 

Choosing the root which is less than 1/a, so that Qo(z) = z/(1 - az) does 
not go through its singularity, and substituting into (7.15) determines tic. 
The critical branching energy E~ is then given by (1.1) and (1.3) as 

E~ = k~ T in ( f l J4 )  (7.17) 

For the parameters of Fig. 10, E~ ~ 14.98k~T. 

8. D ISCUSSION 

We have used classical methods of equilibrium statistical mechanics to 
derive the most probable size distribution and degree of branching of red 
blood cell aggregates. To count the number of configurations for a rouleau 
fixed in space, with n cells and m branch points, we represented the rouleau 
by a rooted tree and used a generating function procedure to count all 
possible rooted trees. Other methods of graphical enumeration, such as 
Polya's theorem, could also have been used. (37) The root of the tree 
corresponded to a face of a red cell which was assumed to be at a fixed 
location. The remainder of the tree was then "grown" from this root. 
Because isomorphic rouleaux, that differ only by a rigid rotation, are grown 
by choosing any end point of a rouleau as the root (see Fig. 4), the number 
of rooted rouleaux overestimates the actual number of rouleaux. Dividing 
the number of rooted rouleaux of a given size by the number of end points 
it contains and accounting for all possible rigid rotations gave the number 
of (unrooted) rouleaux. 

The number of unrooted rouleaux containg n red cells was found to be 
proportional to n-5/2 for large n. This asymptotic result is similar to the 
one found by Stockmayer 08) in his study of the random condensation 
polymerization of f-valent molecules. The polycondensation of three-valent 
particles gives rise to trees identical to the ones studied here. The major 
difference between our calculation and Stockmayer's is that we allowed 
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different energies for chain elongation and branching, whereas Stockmayer 
assumed that these energies were identical. Methods developed by Gor- 
don (39) and Good (4~ based upon branching processes have been used to 
study polymerization reactions in which branching and elongation occur 
with different probabilities (cf. Ref. 41). These methods could be, but have 
not yet been, applied to rouleau formation. 

Both our calculation for rouleaux, and calculations for the random 
polycondensation of f-valent molecules with f />  3, show that infinite-sized 
aggregates can form. In polymer chemistry an infinite-sized aggregate is 
called a gel. In this paper, we have not attempted to calculate the distribu- 
tion of sizes of finite rouleaux past the gel point; however, a number of 
methods of doing so have been proposed in polymer chemistry. (38'4~ 
There are indications that rouleaux form which are large enough to be 
considered a gel. For example, examination of the flow properties of blood 
at low rates of shear indicates that rouleaux generate three-dimensional 
structures which impart to blood a yield-stress. (45) The existence of a yield 
stress means that blood can withstand a finite shearing stress without 
flowing, a rheological property of a plastic or solid. 

A direct comparison of our predicted rouleau size distribution with 
experimental determinations is difficult for a number of reasons discussed 
previously. (4~ Briefly, we restricted our attention to a highly idealized 
system in which there was neither fluid flow nor sedimentation of erythro- 
cytes, processes which tend to be of importance in typical experimental 
setups. Because erythrocytes must collide in order to form rouleaux, equi- 
librium is established very slowly in systems that rely upon diffusionally 
driven collisions. Thus, it may be impractical to wait for equilibrium to be 
established. Nonequilibrium effects can be accounted for by a kinetic 
theory of rouleau formation developed by Samseland Perelson. (~'6) Experi- 
mentally, the collision process is usually speeded up by randomly mixing 
the sample (46'47) or by uniformly shearing it. (48-5~ Mixing or shearing 
breaks up rouleaux, (48-5~ and thus our theory should predict rouleaux that 
are larger than are conventionally observed. Lastly, our theory has not 
taken into consideration finite system effects nor the fact that the number 
of rouleaux of size n is an integer. As precise experimental determinations 

~* become available, refinements to our theory may become justified. of Rn, m 
Our goal here has been to show how the methods of statistical mechanics 
can be used to study cellular aggregation phenomena. 
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